${ }_{A B S T R A C T}$: During a three-year study to assess the effectiven to identify other vertebrate pests, Corvis brachyrhynchos) in almond orchards, we had the opportunity to idenown" species and in selected cases estimate re not well documented. We describe the eight orchards in the Central Valley of California. In addition to crows and
are crop loss fromer pertebrate pests: California ground squirrels (Spermophilus beecheyi), we recorded the presence of savens (Corvus corax), deer mice ays (Aphelocoma coerulescens), yellow-billed magpies (Pica nutalli) (Sus scrofa), and beaver (Castor canadensis). (Peromyscus spp.), western gray squirrels (Sciurus grisens), caused damage of at least $\$ 56 / \mathrm{ha}$ at one site. Jays and jays and magpies were found in six of eight olled Nonpariel variety of almond and tended were found only in two Fresno magpies showed a preference for the soft-shage along the edges. Ravens and wilould not specifically identify nor value the orchards, as opposed to concentrated dan of the Coast Range Mountains. We and abandoned the treated orchard. Nut County orchards located next to wildanced to the broadcast crow distress calls acks, broken branches, and the smashed damage by ravens as they may $17 / \mathrm{ha}$. Pig damage could be identified fre the Fresno County orchards with damage of loss from pigs amounted to $\$ 17$ meer mice were the most serious pest in the marks around the edge of the hole in the nut, appearance of damage nuts. $\$ 1 / \mathrm{ha}$. Signs of deer mouse damage included small, fine incis nuts in the crotch of the tree and around the base
up to $\$ 1$. small shavings from the hull and shell, and a concentration or one orchard with damage of $\$ 46 / \mathrm{ha}$. Tree squirrel damage of the trunk. Tree squirrels were the most serious pen damaged nuts were opened in a characteristic manner. Beavers was concentrated on particular trees in the orchard andercourse. We speculate the presence and the dynamic nature felled almond trees at one orchard located next oographic location, the adaptability of species, vertebrate pest relate to
of wildlife populations.
coma coerulescens, beaver, Castor canadensis, common raven, Corvus corax, damage, deer moud Peromyscus spp., Pica nutalli, Sciurus griseus, scrub jay, Sus scrofa, western gray squirrel, wild pig yellow-billed magpie

Proc. 19th Vertebr. Pest Conf. (T.P. Salmon \& A.C. Crabb, Eds.) Published at Univ. of Calif., Davis. 2000.

INTRODUCTION

Almonds are an important crop in California, ranking fourth among plant crops in the state with a production value of $\$ 1.1$ billion in 1997 (California Farm Bureau Federation 1998). There has been an expansion in almond production with bearing acreage nearly doubling from 86,500 ha in 1973 to 162,000 ha in 1995 (Pradhan and Moulton 1996). The expansion of almond acreage into new areas, such as the western edge of the Central Valley adjacent to the Coast Range mountains, may have exposed almonds to new vertebrate pable and dynamic, species and populations can be adap and food sources. quite capable of utilizing new crops anage almonds. In

A number of vertebraround squirrels (Spermophilus particular, California ground squarve (Corvus brachyrhyncos) are well-known pests in almonds (Clark 1994; Marsh and Salmon 1996). During a study to assess the effectiveness of broadcast distress calls on American crows in almonds, we had the opportunity over a three-year period to observe other vertebrate pests. Our objectives in this paper are: 1) to identify these other pests the damage they are not well documented, cases estimate the crop loss cause; and 3) in selected

STUDY AREAS We studied vertebralley of California (Table 1). In located in the Centa used five orchards in the Sacramento 1997 and 1998 we used the Central Valley). The Stiles, Valley (northern part of the Central County were small Dewey, and three orcharacteristic of many almond orchards (<8 ha), All of these orchards were orchards in the region. Alfalfa, hayfields, tomatoes, surrounded by crop lands. walnuts were common around almonds, pistachios, Both of these orchards were bordered Stiles and Dewey. Both of these dense shrub and tree by a riparian zone that suppounty orchards were the only habitat. The three Sutter eounty a region dominated by mature almond orchards in

In 1999 we used larger orchards. orchard in Yuba County (Sacramento Vadjacent to one another, four blocks of almonds localed zone with a grove of oaks totaling 32 ha . A riparian zock. Walnuts bordered all (Quercus spp.) bordered Rice, almonds, and pasture lands were of the blocks.
located nearby.

We used two orchards in Fre Central Valley). The Joaquin Valley (southern pand 4, 22 ha and 40 ha in area, two orchards, Meyers 1 and 4,22 ha and 40 ha in area,

Table 1. Location, area, number of trees, and age of study orchards in California.

	Location					
Name	Town	County	Area (ha)	No. Trees	Age (yr.)	
Dewey	Yolo	Yolo		2.4	321	19
Stiles	Davis	Yolo		6.5	977	29
Wada-Bailey	Yuba City	Sutter		2.7	690	17
Wada-Carlson	Yuba City	Sutter	5.0	705	>21	
Wada-Oswald	Yuba City	Sutter	4.6	1,208	7	
Conant	Wheatland	Yuba	32.2	5,112	$16-18$	
Meyers 1	Firebaugh	Fresno	21.9	5,940	9	
Meyers 4	Firebaugh	Fresno	39.8	10,835	9	

respectively, were separated by a distance of approximately 10 km . Both orchards were located on the western edge of the intensively farmed valley floor. They directly bordered the wildlands of the Coast Range mountains. The extensive farmed lands near the orchards consisted of cotton, almonds, walnuts, grapes, and vegetable crops.

METHODS

From 1997 to 1999 we evaluated the efficacy of broadcast distress calls to reduce damage by crows. We observed several other species of vertebrate pests while collecting data on crows through bird counts and damage assessments in the orchards. We recorded our observations and the damage caused by these species.

Bird Counts

We counted birds in the morning on the study areas from mid-May through early September in 1997 and 1998. We drove around each orchard on a standard route, using binoculars as needed, and counted all crows, scrub jays (Aphelocoma coerulescens), and yellowbilled magpies (Pica nutalli) seen or heard. We varied the starting times for the counts and the order of the orchards from day to day. In 1999 bird counts were problematic at the Fresno and Yuba county sites. At the Yuba County sites heavy construction activities through much of the summer, including the laying of major pipeline and land-leveling activities for a new orchard, prevented access on a number of occasions. At the Fresno County sites bird counts as described above were not possible because of limited sight-lines due to the rolling terrain of the orchard and the "bushy" nature of the almond trees (a result of the particular pruning system used at this orchard with lower branches retained for more production).

Damage Assessment

We used a stratified random sampling design to assess damage within orchards (Crabb 1991). We divided each orchard into sampling blocks ranging from 40 to 230 trees/block depending on orchard size and layout. We assigned an identification number to each tree within a block and marked the corner trees for each block with plastic ribbon for reference. We selected at random one tree/block/week in each orchard for damage assessment. We divided the area ground under the tree canopy into eight equal sections or wedges, each equivalent to an arc of 45°, using the tree trunk as the center of the circle. We selected one wedge at random, and then counted damaged shells on the ground within the boundary of the selected wedge. Nuts damaged by birds typically had a hole in the side of the shell or half the shell missing along with the nut. We did not count whole nuts on the ground as bird damage due to the possibility of natural fall, even though birds will knock nuts from branches before feeding on the ground. We assigned damage caused by western gray squirrels (Sciurus griseus), deer mice (Peromyscus spp.), beaver (Castor canadensis), or wild pigs (Sus scrofa) according to the species-specific characteristics of the damaged hulls, shells, or other signs such as felled trees, bent or broken limbs, wallows, or tracks.

The first sampling measured damage that had occurred for an unknown time period prior to the first assessment. Thereafter, every week we selected new trees and wedges at random, swept the ground clean of all nuts in the selected wedge, and returned at approximately seven-day intervals to count damaged nuts. Damage could thus be assigned to periods of known length. Damage assessments began prior to treatment (broadcast of crow distress calls using Bird Gard ${ }^{\mathrm{TM}}$ units) and continued until the start of harvest.
nuts $_{0}=\left[\right.$ nuts $_{d}$
where: $=\left(\right.$ nuts $\left._{0} * 1.2 \mathrm{gm}\right) * 0.001 \mathrm{~kg} / \mathrm{gm}$
nut $^{5} \mathrm{kgg}=$ total number of nuts lost in the orchard.
${ }_{\text {nuts }_{s}}^{\text {nuts }_{d}}=$ number of damaged nuts counted within the tree $_{5}=$ wedged-shaped sampling areas
tree $_{5}=$ total number of almond trees in the orchard. nut $_{\mathrm{kg}}=$ weight of nuts lost in kg for the entire
We assumed that all nuts, if they had not been damaged, would have reached a weight of $1.2 \mathrm{gm} / \mathrm{nut}$ at harvest and had a value of $\$ 4.41 / \mathrm{kg}$ (W. Micke, pers. comm., Univ. Calif. Coop. Ext. Specialist). We refined the damage estimates by removing all non-bearing trees (e.g., recent transplants, diseased, or dead trees) from the tree ${ }^{\text {s }}$ statistic.

RESULTS
We recorded the presence of seven other vertebrate ests in the orchards in addition to crows and California ground squirrels (Table 2).
they may feed on the nut while incally has a hole pecked damaged by jays and magpies typica hull and shell. The in the center of the flat side a jagged, irregular outline as edge of the hole usually has aividual damaged nuts could a result of the pecking. Individua damaged by crows. not be distinguished from those many nuts to the Crows, however, will often kee, leaving many damaged ground and then descend feeding behavior results in an nuts under a tree. This aggregated pattern or concentrated pattern of jay damage the random, less concentrord (Crabb 1991). In some scattered throughout an differentiate jay or magpie damage from crow damage on this basis.

Scrub jays and magpies were most abundant at Stiles and Dewey in 1997 and 1998 (Table 3). Although in some cases it appeared that jay or magpie numbers decreased during the treatment period (broadcast of distress calls), the change in numbers was not consistent at all sites nor did we observe any apparent reaction by jays or magpies to the crow distress calls.

Table 2. Vertebrate pests present in Central Valley study orchards in California, 1997 to 1999.

Table 3. Average number of scrub jays (ScJA) and yellow-billed magpies (YbMa) counted in six almond orchards in California from 1997 to 1999 . Numbers in parentheses represent the standard error, $\underline{\underline{n}}$ is the number of bird counts conducted.

Year	Species	Period ${ }^{\text {a }}$	Orchard					
				Stiles	Carlson	Bailey	Oswald	Conant
			Dewey	Stiles			$0.8(0.6)$	-
1997	ScJa	1	$\begin{gathered} 1.2(0.3) \\ \underline{n}=9 \end{gathered}$	$\begin{gathered} 3.5(1.0) \\ \underline{n}=6 \end{gathered}$	$\begin{gathered} 0.5(0.3) \\ \underline{n}=4 \end{gathered}$	$\begin{gathered} 1.0(1.0) \\ \underline{\mathrm{n}}=3 \end{gathered}$	$\underline{n}=5$	
		2	$\begin{gathered} 2.2(0.8) \\ \underline{n}=14 \end{gathered}$	$\begin{gathered} 5.4(0.8) \\ \underline{n}=24 \end{gathered}$	$\begin{gathered} 0.6(0.2) \\ \underline{n}=23 \end{gathered}$	$\begin{gathered} 0.9(0.3) \\ \underline{n}=28 \end{gathered}$	$\begin{gathered} 0.5(0.2) \\ \underline{n}=25 \end{gathered}$	
	YbMa	1	$\begin{gathered} 9.0(2.1) \\ \underline{\mathrm{n}}=9 \end{gathered}$	$\begin{gathered} 13.8(4.1) \\ \underline{n}=6 \end{gathered}$	$\begin{gathered} 0.2(0.2) \\ \underline{n}=4 \end{gathered}$	$\begin{aligned} & 0(-) \\ & \underline{n}=3 \end{aligned}$	$\begin{gathered} 3.4(2.2) \\ \underline{n}=5 \end{gathered}$	-
		2	$\begin{gathered} 4.8(1.5) \\ \underline{n}=14 \end{gathered}$	$\begin{gathered} 3.0(0.5) \\ \underline{n}=24 \end{gathered}$	$\begin{gathered} 1.5(0.4) \\ \underline{n}=23 \end{gathered}$	$\begin{gathered} 0.9(0.2) \\ \underline{n}=28 \end{gathered}$	$\begin{aligned} & 1.8(v .5) \\ & \underline{n}=25 \end{aligned}$	-
1998	ScJa	1	$\begin{gathered} 2.7(0.3) \\ \underline{n}=14 \end{gathered}$	$\begin{gathered} 6.5(0.9) \\ \underline{n}=26 \end{gathered}$	$\begin{gathered} 1.0(0.3) \\ \underline{n}=15 \end{gathered}$	$\begin{gathered} 0.8(0.3) \\ \underline{\mathrm{n}}=14 \end{gathered}$	$\underline{n}=14$.
		2	$\begin{gathered} 2.0(0.4) \\ \underline{n}=22 \end{gathered}$	$\begin{gathered} 3.8(0.6) \\ \underline{n}=32 \end{gathered}$	$\begin{gathered} 0.4(0.2) \\ \underline{n}=37 \end{gathered}$	$\begin{gathered} 0.4(0.1) \\ \underline{n}=59 \end{gathered}$	$\begin{gathered} 1.2(0.3) \\ \underline{n}=32 \end{gathered}$	-
	YbMa	1	$\begin{gathered} 2.1(0.7) \\ n=14 \end{gathered}$	$\begin{gathered} 5.0(1.4) \\ \underline{n}=26 \end{gathered}$	$\begin{gathered} 0.3(0.2) \\ \underline{n}=15 \end{gathered}$	$\begin{gathered} 0.8(0.4) \\ \underline{n}=14 \end{gathered}$	$\begin{gathered} 1.6(0.8) \\ \underline{n}=14 \end{gathered}$	-
		2	$\begin{gathered} 1.5(0.4) \\ \underline{n}=22 \end{gathered}$	$\begin{gathered} 2.9(0.6) \\ \underline{n}=32 \end{gathered}$	$\begin{gathered} 0.1(0.1) \\ \underline{n}=37 \end{gathered}$	$\begin{gathered} 0.9(0.6) \\ \underline{n}=59 \end{gathered}$	$\underline{n}=32$	4.4(1.3)
1999	ScJa	1	-	-	-	-		$\underline{n}=5$
		2	-	-	-	-	-	$\begin{gathered} 4.6(1.8) \\ \underline{n}=8 \end{gathered}$
	YbMa	1	-	-	-	-	-	$\begin{gathered} 1.4(0.5) \\ \underline{n}=5 \end{gathered}$
		2	-	-	-	-	-	$\begin{gathered} 3.3(2.7) \\ \underline{n}=8 \end{gathered}$

Period $1=$ pretreatment period prior to broadcasts of crow distress calls, period $2=$ treatment when crow distress calls were broadcast.

Despite the problem of classifying bird damage by species, we were able to estimate the damage caused by jays and magpies at Stiles in 1998 (Table 4). During the pretreatment period low numbers of crows were observed in the orchard on 10 of 26 counts ($\bar{x}=1.6$, $\mathrm{SE}=1.0$, range $=0$ to 25), thus damage during that period was attributed to all three species. However, after the start of treatment, crows virtually abandoned the orchard (Salmon et al. 1999). Crows were observed in the orchard on 2 of 32 counts ($\overline{\mathrm{x}}=0.2, \mathrm{SE}=0.2$, range $=0$ to 8), thus almost all damage during the treatment period was attributed to jays and magpies. During the treatment period damage by jays and magpies amounted to $\$ 56.32 / \mathrm{ha}$. Overall bird damage for the entire season amounted to $\$ 77.50 / \mathrm{ha}$, the majority of which is attributed to jays and magpies.

We examined damage by almond variety at Stiles (Table 5). The percentage of trees by variety that we sampled in the damage surveys did not differ (all tests of percentages use arcsine transformed data, $X^{2}=0.81,3$, $P=0.85$) from the actual percentage of trees indicates orchard as verified by tree counts. This and accurately our sampling technique was appropriate almond trees. sampled the different varieties of aversion to any Assuming corvids had no preference or variety should be variety of almonds, then damage to each varsy variety in the equal to the percent occurrence of each entage of trees orchard. When we examined the percentage of damaged by variety and compared it to the percerence or trees by variety in the orchard, we found no prefe. This aversion by variety ($X^{2}=1.40,3 \mathrm{df}, P=0.70$). in trees analysis, however, only discloses that cer damage. have damage but does not indicate the degree of damage

Table 4. Bird damage estimates in terms of nut and dollar loss for the Stiles almond orchard in northern California, June to August 1998.

Date	Nuts lost/ha (kg)	Loss/ha (\$)	Loss/day (\$)	Total Loss (\$)
19 Jun	1.2	5.42	--	35.23
26 Jun	1.1	4.90	4.55	31.85
	1.3	5.93	5.51	38.54
2 Jul			0.40	3.18
14 Jul	0.1	0.49		
16 Jul	1.0	4.44	4.81	28.86
				Subtotal ${ }^{\text {a }}$ 137.66
24 Jul	1.7	7.41	6.02	48.16
30 Jul	2.7	11.85	12.84	77.02
	3.7	16.30	15.14	105.95
6 Aug			15.66	125.32
14 Aug	4.4	19.28		
20 Aug ${ }^{\text {b }}$	--	--	1.20	9.62
	0.3	1.48		
28 Aug				Subtotal ${ }^{\text {c }}$ 366.07
Total	17.5	77.50	--	503.73

${ }^{\text {a }}$ Subtotal for the pretreatment period; damage attributed to crows, jays, and magpies.
${ }^{6}$ Plots not useable from 15-20 August due to mowing operations.
${ }^{\text {c }}$ Subtotal for the treatment period (broadcast of distress calls began on 16 July); damage attributed to jays and magpies only.

Table 5. Damage by corvids to almond trees by variety in the Stiles orchard in northern California, 1998.

	Percent of sampled trees $^{\mathrm{a}}$	Actual percent of trees in orchard $^{\text {b }}$	No. of damaged trees	Percent of trees damaged by variety	No. of damaged nuts	Percent of nuts damaged
No. trees sampled by variety	62.4	56.5	49	64.5	2248	82.6
Nonpareil -143	16.2	23.2	10	13.2	192	7.1
Peerless -37	16.2	13.6	12	15.8	224	8.2
Mission -37	5.2	6.7	5	6.6	56	2.1
Merced -12						

${ }^{3}$ (Number of trees sampled for each variety/total number of trees sampled at the given orchard)* 100%;
e.g., for Nonpareil at Stiles, $(143 / 229)^{*} 100 \%=62.4 \%$.
${ }^{6}$ Based on counts by variety.
${ }^{c}$ (Number of damaged trees for a given variety/total number of damaged trees for a given orchard)* 100%; e.g., for Nonpareil at Stiles, $(49 / 76)^{*} 100 \%=64.5 \%$.
${ }^{d}$ (Number of damaged nuts for a given variety/total number of damaged nuts for a given orchard)* 100%;
e.g., for Nonpareil at Stiles, $(2248 / 2720)^{*} 100 \%=82.6 \%$.

Subsequently, further examination based on the proportion of damaged nuts by variety showed one variety suffered more damage than expected and one variety had less damage than expected. At Stiles the Nonpareil trees (a soft-shelled variety) were damaged to a greater degree than expected ($X^{2}=8.70,3 \mathrm{df}, P=0.034$). Conversely, the Peerless trees (a hard-shelled variety) had less nut loss than expected. All other varieties were damaged to the degree expected.

Our field observations and subsequent tests showed that crows frequently used the edges of the orchards, causing more damage along the edges than in the interior portions of the orchards (Salmon et al. 1999). To test Crabb's (1991) assertion that there was no "edge effect" in the pattern of jay damage, we compared the damage on trees in the first three rows around the outer edges of Stiles to damage from the rest of the trees in the inner portions (Table 6). First, the percentage of trees in the outer edge and inner core that we sampled in the damage surveys did not differ (Fisher exact test, $P=0.08$) from the actual percentage of trees in the outer edges and inner cores as verified by tree counts. As noted above for damage by variety, this result indicates our sampling technique accurately sampled the trees in the two zones. Again, we assumed that if the jays and magpies used each zone equally, then damage (as measured by the proportion of damaged nuts) in each zone should be equal to the proportion of trees in each zone. At Stiles we found no difference (Fisher exact test, $P=0.51$) in the proportions between the two zones, indicating no concentration of damage in the outer rows of the orchard.

Common Ravens

We observed common ravens (Corvus corax) only in the Meyers orchards and only during the pretreatment period. Ravens may have responded to the broadcast crow distress calls and avoided the treated orchard (Meyers 4). We observed low numbers of ravens in the general area throughout the summer. Ravens are considered pests to nut crops; 33% of the pistachio growers in the southern San Joaquin Valley responding to a questionnaire reported damage by ravens (Salmon et al. 1986). However, we could not confirm any damage by ravens nor assign specific damage signs to ravens. We never observed ravens in the Sacramento Valley orchards as that region is not occupied range.

Deer Mice
Deer mice were present in the Meyers and Conant orchards. Deer mice typically chewed into the center of the flat side of almond shell, creating an oblong hole running from the proximal end to the distal end of the nut. Small, fine incisor marks around the edge of the hole and small shavings from the hull and shell were the primary signs of deer mouse damage. Deer mice can climb trees, as a result, damaged nuts and shavings were found in the crotch of the tree where the trunk divides to form limbs. We also found damaged nuts and shavings concentrated around the base of trees, especially if cover (e.g., almonds suckers) or burrows were present. We observed deer mouse sign infrequently at Conant; we judged deer mouse damage there as insignificant.

However, deer mice were the most damaging species at Meyers 1 and 4. Damage ranged from $\$ 19$ to $\$ 51 / \mathrm{ha}$ and totaled $\$ 2,450$ for both orchards (Tables 7 and 8).

Western Gray Squirrels

We observed western gray squirrels (a tree squirrel) only at Conant. Gray squirrels usually chew through and break up either the distal half or the proximal half of the nut, leaving the opposite, intact half of the hull and shell as the primary sign. Less often the tree squirrels sometimes chewed through the center of the flat side of the hull and shell, leaving a hole similar to that caused by birds. However, holes caused by squirrels may either have completely straight edges, or incisor marks may be present. Gray squirrels either knocked or clipped the nuts off trees, so many damaged and whole nuts were found scattered on the orchard floor under a tree. Often such damage was concentrated on groups of three or four trees in different locations in the orchard. Damaged nuts were also found near tree trunks, especially around suckers. Tree squirrels are know to strip bark from trees (Sullivan n.d.), but we did not observe any barking damage at Conant. Western gray squirrels caused the majority of damage at Conant. Total damage was valued at $\$ 1,495$ and $\$ 46 / \mathrm{ha}$ (Table 9).

Wild Pigs

The grower informed us of the presence of wild pigs in Meyers 1 and 4 preceding the start of our research. We found pig tracks in the muddy areas along the drip lines within the orchards. The grower indicated that pigs have damaged drip lines in the past, but we did not observe any such damage. We did not realize that the pigs were damaging the almonds until late June 1999 when we discovered a new form of damage. The damaged shells and hulls appeared as though they had been smashed flat with a hammer. Shards of the hulls could be found around the damaged shells that remained. The pruning system used at the Meyers orchards retains branches low to the ground, leaving almonds within reach of pigs. In some cases the pigs bent and broke branches to obtain the nuts. On some limbs the bark had been shorn off, probably by the pig's tusks. Pig damage amounted to about $\$ 17 / \mathrm{ha}$ each for both orchards and totaled $\$ 1070$ (Tables 10 and 11).

Beavers

Beaver damage occurred only at Stiles. In one incident, six trees were gnawed through and toppled during the course of a week. The damaged trees were adjacent to the creek and riparian zone on the south edge of the orchard. Beaver damage is obvious. The felled tree, pointed stump, wood chips around the stump, and drag marks to the water are easily identified. Beavers may remove small patches of bark from a tree to "sample" it (Jenkins 1978). We noted that strips of bark were removed from several almond trees during our damage assessments. The grower indicated that beavers destroyed 57 trees in 1997 and 1998. There was no damage in 1999 after federal trappers removed two adult beavers.

No. of sampled

	trees		trees	
Location of Trees	$218(22.3 \%)$	$81(35.4 \%)$	$26(32.1 \%)$	$760(35.8 \%)$
Outer edge $^{\mathrm{a}}$	$759(77.7 \%)$	$148(64.6 \%)$	$42(28.4 \%)$	$1360(64.2 \%)$

${ }^{3}$ Trees in the first three rows around the outer edges of the orchard.
${ }^{\mathrm{b}}$ All remaining trees not in the outer edge.

Table 7. Deer mice damage estimates in terms of nut and dollar loss for the Meyers 1 orchard in Fresno County, May to August 1999.

	Nuts lost/ha (kg)	Loss/ha $(\$)$	Loss/day $(\$)$	Total loss $(\$)$
26 May	0	0	--	0
2 Jun	0	0	0	0
8 Jun	0.44	1.92	6.99	41.91
15 Jun	0	0	0	0
22 Jun	0	0	0	0
29 Jun	0	0	0	0
6 Jul	0	0	0	0
13 Jul	0	0	0	0
20 Jul	0.87	3.84	11.98	83.83
27 Jul	0	0	0	0
3 Aug	0.44	1.92	5.99	41.91
10 Aug	1.74	7.67	23.95	167.65
17 Aug	0.44	1.92	5.99	41.91
24 Aug	0.44	1.92	5.99	41.91
Total		19.19	-	419.12

Table 8. Deer mice damage estimates in terms of nut and dollar loss for the Meyers 4 orchard in Fresno County, May to August 1999.

	Nuts lost/ha (kg)	Loss/ha $(\$)$	Loss/day $(\$)$	Total loss $(\$)$
Date	0	0	-	0
26 May	0.87	3.84	21.84	152.90
2 Jun	0.44	1.92	12.74	76.45
8 Jun	1.16	5.12	29.12	203.87
15 Jun	1.45	6.40	36.41	254.84
22 Jun	0.44	1.92	10.92	76.45
29 Jun	0.73	3.20	18.20	127.42
6 Jul	0.29	1.28	7.28	50.97
13 Jul	1.16	5.12	29.12	203.87
20 Jul	0.29	1.28	7.28	50.97
27 Jul	0.62	2.71	15.42	107.93
3 Aug	2.32	10.24	58.25	407.74
10 Aug	0.58	2.56	14.56	101.94
17 Aug	0.42	30.84	215.86	
24 Aug	1.23	5.42	-	2031.21
Total		51.01		

	Nuts lost/ha (kg)	Loss/ha $(\$)$	Loss/day $(\$)$	Total loss $(\$)$
17 Mate	1.39	6.15	-	198.06
24 May	2.98	13.16	60.60	424.18
31 May	0.28	1.22	5.62	39.37
7 Jun	0.26	1.13	5.21	36.44
14 Jun	0.12	0.51	2.37	16.56
21 Jun	1.12	4.95	22.80	159.57
28 Jun	1.67	7.36	33.87	237.06
5 Jul	0.06	0.26	1.19	8.31
12 Jul	0.58	2.57	11.81	82.69
19 Jul	0.10	0.46	2.11	14.78
26 Jul	0.03	0.13	0.59	4.14
2 Aug	0.67	2.97	13.65	95.58
9 Aug	0.26	1.15	5.28	36.98
16 Aug	0.27	1.20	5.55	38.83
23 Aug	0.18	0.77	3.55	24.87
30 Aug	0.55	2.41	11.09	77.62
Total		46.40	--	1495.04

Table 10. Wild pig damage estimates in terms of nut and dollar loss for the Meyers 1 orchard in Fresno County, June to August 1999.

Date	Nuts lost/ha (kg)	Loss/ha $(\$)$	Loss/day $(\$)$	Total loss $(\$)$
29 Jun	0	0	-	0
6 Jul	0	0	0	0
13 Jul	0	0	0	0
20 Jul	0	0	0	0
27 Jul	0	0	0	0
3 Aug	0.44	1.92	5.99	41.91
10 Aug	3.48	15.35	47.90	335.30
17 Aug	0	0	0	0
24 Aug	0	0	0	0
Total		17.27	--	377.21

Table 11. Wild pig damage estimates in terms of nut and dollar loss for the Meyers 4 orchard in Fresno County, June to August 1999.

Date	Nuts lost/ha (kg)	Loss/ha $(\$)$	Loss/day $(\$)$	Total loss $(\$)$
29 Jun	0.73	3.20	--	127.42
6 Jul	0	0	0	0
13 Jul	1.60	7.04	40.05	280.32
20 Jul	1.16	5.12	29.12	203.87
27 Jul	0	0	0	0
3 Aug	0	0	0	0
10 Aug	0	0	0	0
17 Aug	0	0	0	0
24 Aug	0.46	2.03	11.56	80.95
Total		17.39	--	692.56

or orchard may tocal habitat conditions may favor some spectw. aniple, water course bordering Stiles served as a travelw whe
exposed the orchard to damage by beavers. The exposed the of tall trees and dense shrub-growth in we riparian zones next to Stiles and Dewey probably compared to the other orchards. We frequently observed jays and magpies flying back and forth from the riparian areas to me orchards. Similarly, the numerous and nearby orchards may have provided gray squirrels with routes reach and use the Conant orchard.

Geographic location may determine the presence or absence of a pest. The six orchards in northern California had no ravens or wild pigs because they were located outside of the occupied ranges of the two species. On the other hand, the establishment of the Meyers orchards on the edge of wildlands represented an expansion of agriculture into a natural habitat already occupied by ravens, deer mice, and wild pigs.

Adaptability and the dynamic nature of wildlife populations may also play a role in the presence and abundance of a species. With the establishment of the Meyers orchards, ravens, deer mice, and wild pigs adapted to the favorable conditions (e.g., new ards. The water sources) provided by the new example. Wild pig
wild pig provides an excellent exal populations have increased dramatically in California. Wild pigs increased their range from a relatively few coastal areas in the 1960s to 49 of California's 58 counties by 1996 (Waithman et al. 1999). Wild pig populations in the central Coast Range near the Fresno County orchards are among the highest in the state (Waithman et al. 1999). The high population numbers and range expansion have in part been attributed to high reproductive output, enhanced adaptive abilities resulting from interbreeding with Eurasian wild boar, and agricultural forage availability associated witritual fields provide development. and in the case of the Meyer orchards abundant forage, and irrigation, moist sites for wallowing. with drip-line irrigation, During the hot, dry season and Coblentz 1986). Due to the to wallow at neavy cover in response to high daytime temperatures in the summer, wild pigs may travel up to 10 km daily between daytime bedding sites and nighttime foraging sites (Barrett 1978). Pigs have not been observed by the grower in the orchards during the day. The grower reported an absence of cover where pigs could rest during the day for a distance of at least 1.6 km west from the orchards into the mountains. This suggests pigs were traveling at least 3.2 km each night between daytime cover and the orchards, which is well within reported travel distances.

Some of the species we observed are not widely known as pests in almonds or the extent of damage they cause has not been documented. Most almond growers may be aware of jays and magpies because they are loud and conspicuous, but it is unlikely that many are aware
the grower mentoneas in the spring, requirng clipped buds or blossoms bait. Deer mice were the application of anticoaguing the summer, with damage mosunting to $\$ 51 / \mathrm{ha}$ at Meyers 4 . Again, this estimate is conservative because it does not account for nuts eaten in the crotch of a tree or taken into burrows. Western gray squirrels caused the majority of the damage at Conant, amounting to $\$ 46 /$ ha despite an ongoing squirrel control program. Tree squirrel damage in almonds has not been widely reported, having only been reported to us from only a few orchards in Fresno County (M. Freeman, pers. comm., Univ. Calif. Farm Advisor). At this time tree squirrels appear to be a local, but potentially serious problem for almond growers.
MANAGEMENT IMPLICATIONS
The presence of several "lesser-known" vertebrate pests in our study orchards points to several considerations for growers and managers.

1. Species usually considered as cause significant
deer mice, tree squirrels) may economic loss.
2. Wildlife species can be quite adaptable, capable of altering or developing new behaviors to take advantage of new food or water sources, and other situations.
3. Wildlife populations are dynamic; numbers can
increase rapidly, geographic range can expand.
4. Managers must have the ability to identify damage
caused by a variety of species, and need to be alert to potential new pests.
5. Managers need to have a plan or the knowledge of how to cope with any potential pest.

ACKNOWLEDGMENTS

We thank Joe Conant, Harry and Jane Dewey, Marvin Meyers, David Stiles, Ken Wada, and Gary Wada for access to their orchards. Danny Cantrell, Casey Conant, Greg Meyers, David Sieperda, and Jose Soliz helped with various field activities and history. information concerning pest sightings anducted bird Wendy Ford, Dan Kurth, and Se. Wilbur Reil and John counts or damage assessmenfornia Cooperative Extension Edstrom, University olped identify cooperators. We Farm Advisors, helped and funding provided by the appreciate the support anesearch Advisory Committee, Vertebrate Pest Control of Food and Agriculture, contract \#96-0486.

LITERATURE CITED B. E. COBLENTZ. 1986. BABER, D. W., and B. Density, home range, habitat ase, Island. J. Mamm. feral pigs on Santa Cas 67(3):512-525. 1978. The feral hog on the Dye BARRETT, R. M. 1978.
Creek Ranch, CA. Hilgardia 46(9):283-355.

CALIFORNIA FARM BUREAU FEDERATION. 1998. California Agricultural Facts [Web Page], available at www.cfbf.com/agfacts.htm, accessed 23 September 1999.
CLARK, J. P. 1994. Vertebrate pest control handbook. $4^{\text {th }}$ ed. Calif. Dep. Food and Agric. Sacramento, CA. n.p.
CRABB, A. C. 1991. Survey and field sampling techniques to assess bird damage in pistachios. Ph.D. Thesis. University of California, Davis. 87 pp.
JENKINS, S. H. 1978 . Food selection by beavers: sampling behavior. Breviora 447:1-6.
MARSH, R. E., and T. P. SALMON. 1996. Vertebrate pest management. Pages 224-236 in W. C. Micke, ed. Almond production manual. Univ. Calif. Div. Agric. and Nat. Resour. Publ. 3364.
PRADHAN, V., and K. MOULTON. 1996. Time series data relating to California crop production and prices and United States and California prices,
income, and employment. Coop. Extension Dept. Agric. and Resour. Econ. 48 pp.
SALMON, T. P, A. C. CRABB, and R. E. MARSH. 1986. Bird damage to pistachios. Calif. Agric. 40(5-6):5-8.

SALMON, T. P., W. PAUL GORENZEL, A. B. PEARSON, and S. R. RYAN. 1999. A test of broadcast calls to reduce crow damage in almonds. Final Rep., Calif. Dep. Food and Agric., Contract No. 96-0486-II, Sacramento, CA. 31 pp.
SULLIVAN, T. P. n. d. Identification and management of wildlife damage in forests of the Pacific Northwest. Appl. Mamm. Res. Inst., Summerland, B. C., Canada. 47 pp .

WAITHMAN, J. D., R. A. SWEITZER, D. VAN VUREN, J. D. DREW, A. J. BRINKHAUS, I. A. GARDNER, and W. M. BOYCE. 1999. Range expansion, population sizes, and management of wild pigs in California. J. Wildl. Manage. 63(1):298-308.

