ed, as well as
 of the

Proc. 17th Vertebr. Pest Conf. (R.M. Timm \& A.C. Crabb, Eds.) Published at Univ. of Calif., Davis. 1996.

NTRODUCTION
The California ground squirrel (Spermophilus The California for millions of dollars of damage beecheyi) is responsible (Clark 1978). Since the annually ton of registrations for compound 1080 and canclirychnine for squirrel control, zinc phosphide and some
sind of the anticoagulant compounds, such as diphacinone and chlorophacinone, have been the only baits available for squirrel control. The California Department of Food and Agriculture is seeking a Section 3 EPA registration of diphacinone treated grain bait for control of carried under ground squirrel. These baits have been of the required $24(\mathrm{c})$ registrations previously.
data pack e demonstrated, with a 70% level of control as the threshold.

This study was designed to evaluate the field efficacy of Rodent Bait Diphacinone Treated Grain, using two concentrations of active ingredient and two application methods. Degradation rates of baits plasses were also and residue loads in ground squirrel carcasses were aso assessed.

METHODS AND MATERIALS

 Study Site The study was conducted on the San Joaquin Experimental Range, a 4,500 acre north of Fresno, located approximately 17 Sierra Nevada Foothills. California in the lower sel 1700 feet above sea level. Elevations range from 700 to the summers hot and dry. Winters are mild and moist and inches. The vegetation is Annual rainfall averages 19 inches type, consisting of classified as the plant-oak wense stands of trees and brush grassland, savannah, and Most herbaceous plant species (Duncan, et al. 1985). Most hew rapidly and set seed in germinate with the fall rains, g-May (Larson, et al. 1985). the spring, drying out by mid oresent the bait at a time This study was scheduled to phifting from green forage to when the squirrel's diet is shing of the year are weaned and seeds, and when the yousactively foraging.
support large, well established populations of Spermophilus beecheyi. Squirrels are distributed over the entire ranch, although densities are greatest in the large open meadows. plots were established on the ranch Seventeen census plots wots ranged from 1.4 to 3.3 in mid-May 1994. Census plots ranged were marked with acres in size. Census pire surveying stakes. Buffer zones of approximately 225 feet were marked around the perimeter of each census plot receiving test substance.

Using a randomization procedire, dacinone bait applied assigned to receive the 0.005% diphacinone the 0.01% by spot baiting, five plots to baiting, two plots were diphacinone bait applied by spo in bait stations, and to be treated with the 0.00 entrol plots. The two five plots served as untreareated plots served as controls geographically closest un.

Activity Determination were used: visual counts and Two activity indice active burrow counts. method followed the guidelines

The visual count met (1983). Natural or artificial established by Fagerstonew of most or all of the census blinds which offered a
plot were established near active burrow counts were
Visual counts and acter bait applications. On spot conducted before and attent visual censuses were baited plots, mid-treatme beginning seven to eight days conducted for three days, after the first bait application. and help determine the to assess baiting efficacy he post-treatment censusing. appropriate time to begin on bait station plots was Mid-treatment censusing on 14 days after the initial conducted for three days, starting

On spot baited plots, post-treatment visual census (bait began 10 to 11 days after the with half the plots being applications were staggere, next day). Post-treatment baited one day and half the onducted 14 to 15 days after active burrow counts were conducted 14 to 15 dand
the first bait application. Post-treatment censusing on bait station plots began 22 days after the stations were first filled.

During each visual censusing period, three counts were made on each plot for three consecutive days during peak activity periods. At 15 minute intervals, a single slow scan of the plot was made using binoculars. All visible squirrels were counted. From the nine counts conducted over three days, the highest single count was used as the population estimate.

Closed burrow censuses was completed. All squirrel after the visual counting we census plots. burrows were closed on the counted 48 hours ($\pm 2.25 \mathrm{hr}$)

Active burrows were burrows were marked with after being closed.

Bait Analysis

Baits were manufactured by Haco, Inc. of Madison, Wisconsin. The baits are a whole oat groat coated with diphacinone and an oil soluble blue dye. Representative samples of each product were analyzed at Genesis Laboratories in Fort Collins, Colorado to determine the concentration and homogeneity of the active ingredient. Samples were analyzed before the products were applied in the field.

Bait stability under each bait was placed in aluminum Approximately 200 g of each wans were covered with $1 / 4^{\prime \prime}$ pie pans in the field. The staked down to prevent mesh hardware cloth The samples were placed on the disturbance by animals. first day bait was applied andots. A bait sample was also exposure on the spot baited with the openings covered with placed in a bait station, and then retrieved for analysis. wire mesh, for 22 days and in field samples were Diphacinone concentrations from unopened sacks of bait compared with samples theld site. under storage at the field site.

A high performance liquidine the concentration of method was used to de method employs a reversed diphacinone in the baits. Tetection, and internal standard phase column,

antification.

Bait Application: Spot Baiting following the closed Baiting began immediately first applied on May 22, burrow censusing. Bait was a staggered schedule. Five 1994. Plots were baited on application on May 22. The other plots received the first baited on May 23. The final five plots were first bated 1994.
application was on May 29, 1994. Bait was spread in the grass near burrows at
Bait was spread (approximately 45 grams) per a rate of $1 / 3$ cup appere repeated every second day placement. Applications four applications. Placements until each plot had receis as needed to maintain a continuous supply. The blue dye enabled applicators to readily estimate consumption in the field.

Bait Application: Bait Stations were constructed of 4 inch diameter Bait stations were con " T " shape. The bait stations white PVC pipe joined in a "T shape.

Each station was placed in an inverted position, and fastened to a stake. This arrangement provides two entrances and visibility through both ends for squirrels. A cap covered the reservoir. Bait stations were filled on the first day with 7 cups of bait each, so each station contained about 900 grams or 2 pounds of bait. Stations were checked every third day and replenished as needed. Usually bait was added if it appeared that 50% or more of the initial quantity had been consumed. After June 4 (12 days), no more bait was applied to either plot. Stations with high activity were replenished by transferring bait from less active stations.

Baiting Efficacy

Baiting efficacy was calculated by the following formula if there was no decrease in the control plot population index during the period:

Efficacy $=$ $\frac{\text { Pre-treatment Census - Post-treatm }}{\text { Pre-treatment Census }}$

If the control plot population index declined during the treatment period, the following formula was used to adjust for the change:

Efficacy $=$
 1. $\frac{\text { Post-treatment T-1 }}{\text { Pre-treatment T-1 }} \times \frac{\text { Pre-treatment } \mathrm{C}-1}{\text { Post-treatment } \mathrm{C}-1}$

$x 100$

Analysis of variance was used to compare efficacy between and within test plots. T-tests were used to test for significant differences between treated and control plots, except in the case of the two bait station plots, which were simply compared to results on the two nearest control plots.

Carcass Searches

Census plots were cleared of carcasses before baiting began as part of the burrow closing procedure. Carcas searches were usually conducted once each day on ead treated census plot and buffer zone during the baitin period.

Specimens of ground squirrels found on the surfac were collected until a total of 8 to 10 animals had brou recovered from each set of treatment plots. Non-target mammal specimens were examined for sis of the test substance ingestion and symptoms anticoagulant poisoning.

RESULTS AND DISCUSSION
 Plots Sizes, Bait Applications

Census plot areas ranged from 1.9 to 3.9 acres. the addition of a 225^{\prime} buffer zone to treated plo treated plot areas ranged from 11.5 to 12.6 pound p

Baiting rates ranged from 10.3 to 12.6 was only on spot baited plots. The bation plots (Table le pounds per acre on the bait station plots repre baiting rates for the bait station por the sp consumption, whereas the figures tor ersed. plots represent the amount of bait dispersed

Baiting rates on plots were baited four times, eveive placebo bait. Spot baited plots 22 days. Control plots did not receive placebo bait.

The bait application pattern illustrated in Figure 1 corresponds well with field observations of bait consumption. Spot baited placements were readily consumed after the frist and within 24 hours. The miost of the bait being sharply following the third consumption rate decestimated that roughly 50% of the application. It was esen within 48 hours. Much of the third application remained uneaten.
fourth application

Efficacy

Efficacy was well above the EPA standard of 70% for both concentrations of bait and both application methods. Both activity indices found a greater than 90% decline in activity on spot baited plots (Table 2, Figures 2 and 3). Both baits reduced populations by over 90%. There was no significant difference between performance of the different bait concentrations. The bait exposure period was 10 to 11 days.

Figure 1. Spot baiting applications. Day 0 represents the initial application. Bait was replenished every other day to maintain a constant supply.

Evidence of squirrels was not seen using the bait stations until four to five days after the bait was first applied. Consumption then picked up. About one-half of the bait dispensed was retrieved when stations were collected following 22 days exposure.

Figure 2. Results of visual activity counts on spot baited plots. Arrows indicate bait applications.

Tables 3 and 4 present the results of the activity counts on the bait station plots. The bait exposure period was 22 days. The efficacy was somewhat lower on bait station plots: 84.0 to 92.2% according to visual counts, and 81.8 to 87% according to active burrow counts. The lower efficacy is largely attributable to lower active
not be suitable for using more than twice in a short time period.

Bait Degradation

Concentrations of diphacinone in baits placed in open locations (spot baited plots) declined by approximately 50% during the 9 day exposure period. Concentrations of diphacinone in bait retrieved from bait stations and bait stored in the original containers degraded by about 10% during 22 days (Table 5, Figure 6).

Carcasses

The number of squirrel carcasses found on treated plots was approximately 1 per acre, regardless of the bait concentration or application method (Table 6.) Mean total diphacinone in whole squirrel carcasses ranged from 0.45 to 0.48 milligrams. There appears to be no advantage in using the higher concentration of bait to reduce numbers of squirrel carcasses on the surface, as was suggested by previous studies (Clark 1978).

A total of 30 carcasses of eight other rodent species and lagomorphs were found on the spot baited plots ($0.2 /$ acre). A total of nine non-target carcasses of four rodent and lagomorph species were found on the two bait station plots ($0.3 /$ acre). Most non-targets had indications of bait ingestion. This design of bait station does not appear to provide any benefits in reducing non-target
hazards compared to spot baiting.

No secondary poisoning cases were observed, although predators were common in the area. Vultures (Cathartes aura) were observed eviscerating squirrel carcasses found on the plots. This behavior has been noted before in vultures (Hazen and Poché, 1992) and in burrow counts on the control plots. As illustrated in Figure 4, visual activity counts increased on plots 11 and 14 during the bait station study, while active burrow 14 during the bait station study, This method may
counts (Figure 5) declined each time. Tin
Figure 3. Results of active burrow counts on spot baited plots. Arrows indicate bait applications.

Results of visual activity and active burrow counts on spot baited plots. The highest number of squirrels seen Table 2. Results of visual activity and active burrow esed as the population estimate. The bait exposure period between during pre-treatment and post-treatment counts was used as the popuensus plots immediately after the three day visual censusing was 10 or 11 days. All burs 48 hours later.

5
Control

Results of visual activity counts on bait station plots. The darnug er used as controls. Mid-treatment count in the spot baiting study, the two closest to 16 days after bait was applied.

Table 4. Results of active burrow counts on bait station plots. The baiting period was 22 days. Of the five control

Unable to complete activity count due to livestock on the plot.

Figure 4. Results of visual activity counts on bait station plots.

Figure 5. Results of active burrow counts on bait station plots. This method was used on the control plots three times, but only twice on treated plots. Note decline in index on control plots each time this method is repeated.

Bait degradation rates. Baits were analyzed before and after application in the field. Tait degradation rates. Batere retrieved from spot baited plots and from bait stations. samples from the inital applicamples kept in storage at the field site. All values are ppm diphacinone.

	Initial	Spot Baiting	Bait Station	Storage
Nominal	48.2	13.5	45.0	45.9
50.0	95.9	45.4	n / a	93.0
100.0				

'Based on 9 days exposure in the field.
${ }^{2}$ Based on 17 days exposure in a bait station.

Table 6. Squirrel carcasses found above ground on treated plots. No carcasses of squirrels or

LITERATURE CITED
DUNCAN, D. A., L. V. RITTER, and T. F. NEWMAN. 1985. Vertebrate fauna of the San Joaquin Experimental Range, California: a 50 year checklist. California Agricultural Technology Institute. California State University, Fresno. Fresno, CA. 41 pp . ARSON, J. H., J. STEBBINS, alist of the plants of the JR. 1985. A revised checklist of he California
San Joaquin Experimental Range. California Stale Agricultural Technology Institute. 41 pp .
University, Fresno. Fresno, CA. California ground PPM diphacinone

BAIT DEGRADATION RATES

HAZEN, B., and R. POCHE. 1992. Californg 0.005% squirrel field efficacy study ${ }^{2}$ Proc. 15th Vertebrate Pest chlorophacinone bait. Proc. Sth ertebraviv. of Conf., J. E. Borecco 22-329.
Calif., Davis. pp. A. 1983. An evaluation of visu12
GERSTONE, K. A. 239.246
FAGERSTONE, K. A. counts for censusing ground squirrels. Pages $239-24$ counts for censusing ground squirrels. Managel
in Vertebrate Pest
Control Materials: 14th Symposium, E. Kaukeinen, PA ASTM Special Tech. Pub. 817, Philadelphi 315 pp .
RECORD, C. R., and R. E. MARSH. Rodenticide residues in animal carcasses $163^{\text {and }} 168$ relevance to secondary hazards. Pages C. Crabb Proc. Thirteenth Vert. Pest Conf., A. Calis. 326 Pp.

Figure 6. Bait degradation rates for bats retrieved from spot Figure 6. Bait degradation rates for bats retrieved original
baited plots, bait stations, and bait stored in the or containers.

